入學(xué)時(shí)間 | 項(xiàng)目時(shí)長 | 項(xiàng)目學(xué)費(fèi) |
秋 | 2年 | 28683.09美元/年 |
類型 | 總分要求 | 小分要求 |
雅思 | 7.0 | / |
托福 | 80 | / |
申請費(fèi):$140
GPA要求:3.0+/4.0(建議3.5+)
外語能力要求:不需要GRE
加州大學(xué)圣塔芭芭拉分校的數(shù)學(xué)碩士專業(yè)在其研究生培訓(xùn)中主要注重三個(gè)方面:1)應(yīng)用數(shù)學(xué):數(shù)學(xué)家能夠幫助解決人類其他領(lǐng)域中出現(xiàn)的問題2)數(shù)學(xué)教育:培訓(xùn)他人如何在他們的學(xué)習(xí)過程中應(yīng)用數(shù)學(xué)的相關(guān)知識3)數(shù)學(xué)學(xué)科:擴(kuò)大數(shù)學(xué)學(xué)習(xí)的范圍,并加深學(xué)生對相關(guān)學(xué)科的理解。該專業(yè)畢業(yè)生將能夠熟練掌握代數(shù)知識和數(shù)學(xué)分析,包括線性代數(shù),實(shí)數(shù)分析,以及復(fù)雜分析等;將能夠使用純數(shù)學(xué)或應(yīng)用數(shù)學(xué)的方法來理解前沿的數(shù)學(xué)知識;將能夠計(jì)劃和執(zhí)行研究項(xiàng)目,分析相關(guān)的發(fā)現(xiàn),并將結(jié)果組織成連貫的論點(diǎn)。
序號 | 課程介紹 | Curriculum |
1 | 矩陣分析與計(jì)算 | Matrix Analysis and Computation |
2 | 數(shù)值模擬 | Numerical Simulation |
3 | 偏微分方程的數(shù)值解-有限差分法 | Numerical Solution of Partial Differential Equations--Finite Difference Methods |
4 | 偏微分方程的數(shù)值解-有限元方法 | Numerical Solution of Partial Differential Equations - Finite Element Methods |
5 | 常微分方程 | Ordinary Differential Equations |
6 | 混沌動(dòng)力學(xué)與分岔理論 | Chaotic Dynamics and Bifurcation Theory |
7 | 傅里葉級數(shù)與數(shù)值方法 | Fourier Series and Numerical Methods |
8 | 拓?fù)浠A(chǔ) | Foundations of Topology |
幾何留學(xué)APP
2403個(gè)學(xué)校
10690個(gè)專業(yè)
3274個(gè)錄取案例
8697份錄取報(bào)告